If it's not what You are looking for type in the equation solver your own equation and let us solve it.
n^2+3n-480=0
a = 1; b = 3; c = -480;
Δ = b2-4ac
Δ = 32-4·1·(-480)
Δ = 1929
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-\sqrt{1929}}{2*1}=\frac{-3-\sqrt{1929}}{2} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+\sqrt{1929}}{2*1}=\frac{-3+\sqrt{1929}}{2} $
| 33.5+x=66 | | 6x+x+30=107 | | x^2-30x=8 | | -4.9x^2+15x+25=0 | | 80-a=16 | | 753-5x=723 | | 3n^2+11n-92=0 | | 4+5x6=54 | | 7x+10=-90 | | 4x^2-25x-86=0 | | 1/5*x=2 | | 1/5*x^2=x | | 3^3x-3=5^5x-5 | | 3(x-7)^2=48 | | 6x-42x=16 | | (3x-6)(x-1)=0 | | x^2-5x+10=42 | | X^2-3x-7=x+6 | | 65+2x-3+x+30=360 | | X^2-5x+3=18 | | 3a+1a=2a+2a | | 90+41+41+x=180 | | 67+(3x+30)+3x+(x-31)=360 | | 10x+14=6x+18 | | 67+(3x+30)+3x(x-31)=360 | | 2.25(54)+3=o | | 90+x+(5x-8)=180 | | (2x+20)+(3x+5)+(6x-10)=180 | | 5x-3=-47 | | 64-8k=0 | | K/2-1=k/3+4 | | 2x^2+14x-255=0 |